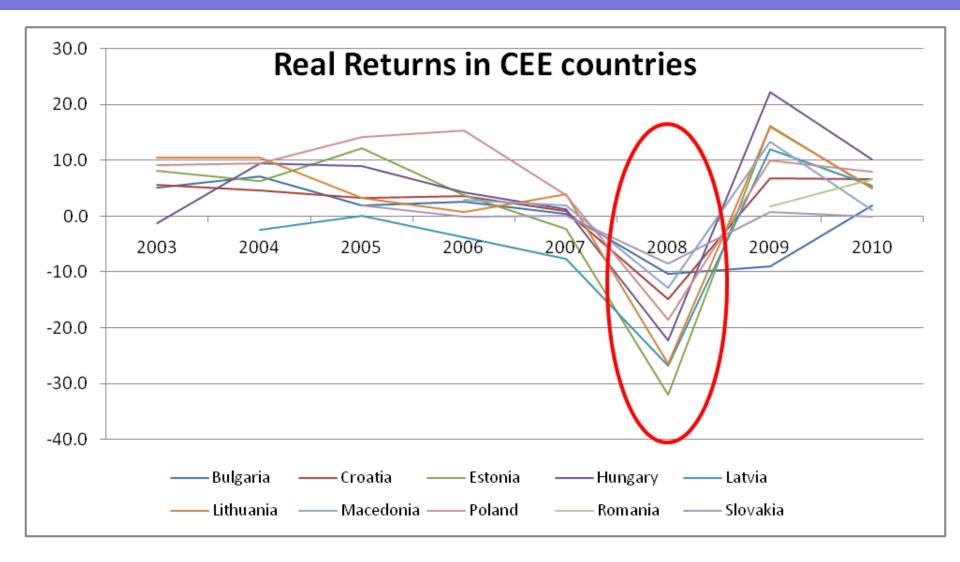
The Use of Guarantees on Contributions in Pension Funds

Luis M. Viceira Harvard Business School, NBER, and CEPR Heinz P. Rudolph World Bank

V Contractual Savings Conference World Bank Washington DC, January 9, 2012

© Luis M. Viceira, Harvard Business School


Global Relevance of DC Pension Systems

- The U.S. has moved to a system where defined contribution (DC) plans play a key role in retirement provision:
 - Corporate defined-benefit (DB) pension plans are disappearing o frozen
 - Public DB pension plans are in acute crisis
 - Social Security is expected to provide minimum pension income.
- Other developed economies are introducing or thinking about introducing DC elements in their public pension systems.
- Pension systems in most developing economies are based on DC plans.

The Meaning of Risk in DC Pension Systems

- DC pension plans typically allow for investment risk during asset accumulation • phase, and make this risk exposure decline as participants approach retirement.
- Investment risk works both ways: It increases upside potential of contributions, ۲ but it can also result in asset accumulation and thus replacement rates well below expected values.
- At times of large declines in asset values, all plan participants suffer: ۲
 - Those near retirement suffer losses to the extent that their plans still have exposure to investment risk.
 - Young participants might be negatively impacted if the shock to asset values is permanent.
 - Participants with medium retirement horizons are likely to be the most affected: they typically have significant risk exposure which leads to significant losses, and these losses get locked as their life-cycle strategies move out of equities. 2

Pension Fund Losses during the Crisis

DC Pension Fund Guarantees

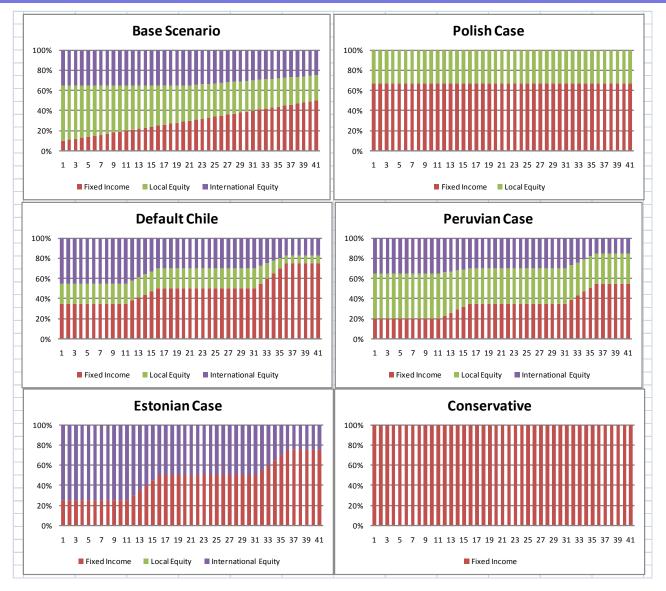
- Pension fund losses during the crisis brought back the discussion of guarantees on contributions.
- Pension funds in some emerging economies already have guarantees on contributions:

Guarantees on the Contributions in Selected Emerging Economies

Country	Type of Guarantee	Exercised at	Issued by	Cost to partic.
Kazakhstan	Real value of contributions	Retirement age	Government	Free
Hungary	Real value of contributions	Retirement age	Government	Free
Romania	Nominal value of cont.	Subject to interpr.	PFMCs	Free
Russia	Nominal value of cont.	Subject to interpr.	PFMCs	Free
Slovakia	Nominal value of cont.	Biannually	PFMCs	Free
Colombia	Nominal value of cont.	Retirement age	Specialized Agency	0.15% AUM

This paper

- Guarantees are typically on the value of the contributions (nominal or real) and are provided free of charge to pension plan participants (i.e., taxpayers assume the cost).
- This paper examines guarantees on DC plans.
- Price guarantees on contributions:
 - How much more expensive are real guarantees than nominal guarantees?
 - How much more expensive are guarantees on plans with significant equity exposure than guarantees on more conservative plans?


This paper

- Examine impact on asset accumulation and replacement rates:
 - What impact do these guarantees have on expected asset accumulation and replacement rates?
 - If these guarantees are exercised, what kind of minimum asset accumulation and replacement rates do they provide?
- Implementation:
 - How to hedge guarantees?
 - Who should pay for them? Intergenerational risk transfers

Guarantees as a Put Option

- A guarantee on value of contributions is a portfolio of put options on the portfolio underlying the pension fund investment strategy.
- Each option differs from the others in its time to expiration.
- Example:
 - Guarantee on contribution of \$1 at age 35 with retirement age at age 65 is a guarantee that 30 years from now the participant will get at least \$1 (if the guarantee is nominal) or at least \$1 plus inflation (if the guarantee is real).
- At retirement, participant holds as many guarantees as years he has contributed to the plan.

Pricing the Guarantees: Fund Strategies

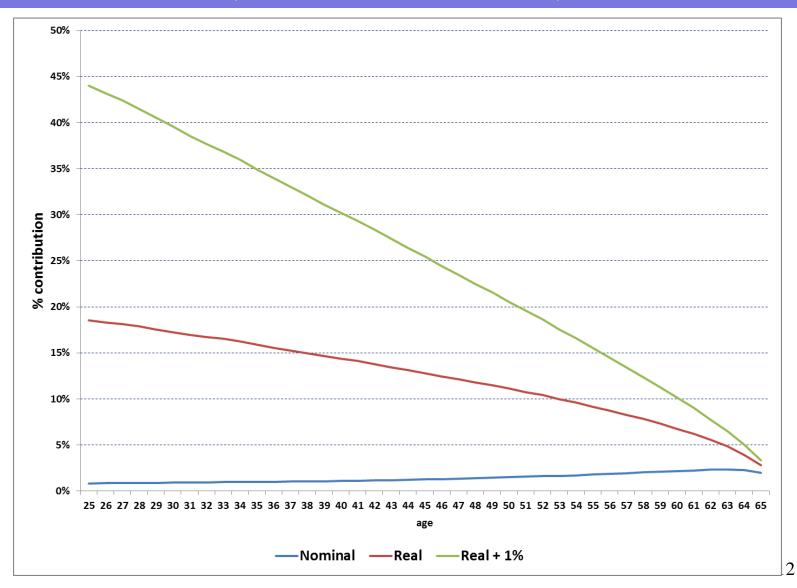
© Luis M. Viceira, Harvard Business School

Pricing the Guarantees

- We price three guarantees:
 - Guarantee on nominal value of contributions
 - Guarantee on real value of contributions
 - Guarantee on real value of contributions plus 1% p.a.
- Note that:
 - Nominal guarantees are more valuable than real guarantees in deflationary environments, because their real value increases in those scenarios.
 - Real guarantees are more valuable in inflationary environments.

Pricing the Guarantees

- We price the guarantees (or put options) on each of these funds through standard numerical methods:
 - Underlying investment strategies typically change asset allocation over working life of plan participant
 - We want to allow for stochastic interest rates
 - We abstract from time-varying asset return volatility and correlations.
- Assumptions:
 - Bond allocation is on an inflation indexed bond whose maturity equals time to retirement
 - Local equity is the Chilean stock market
 - Interest rates and inflation are also for Chile

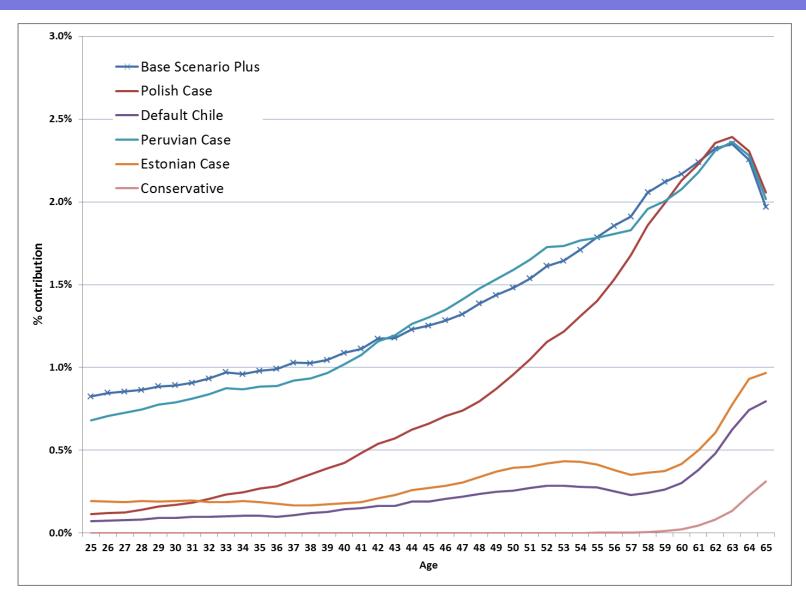

Parameter Assumptions

	Local equity (real)	World equity (real)	Local real interest rate	Inflation
μ (% p.a.)	7.5	6.5	1.0	3.0
σ (% p.a.)	23.1	16.7	1.4	1.9
AR(1)				0.439
Velocity			0.383	

Davamatara

- We assume a 38.3% correlation between local equity and global equity returns, and zero for all other correlations.
- We conduct 10,000 simulations for each strategy, evaluate the payoff on the strategy with and without the guarantee, and price the guarantee via risk neutral methods.

Value of Guarantees in Base Case (% of contributions)

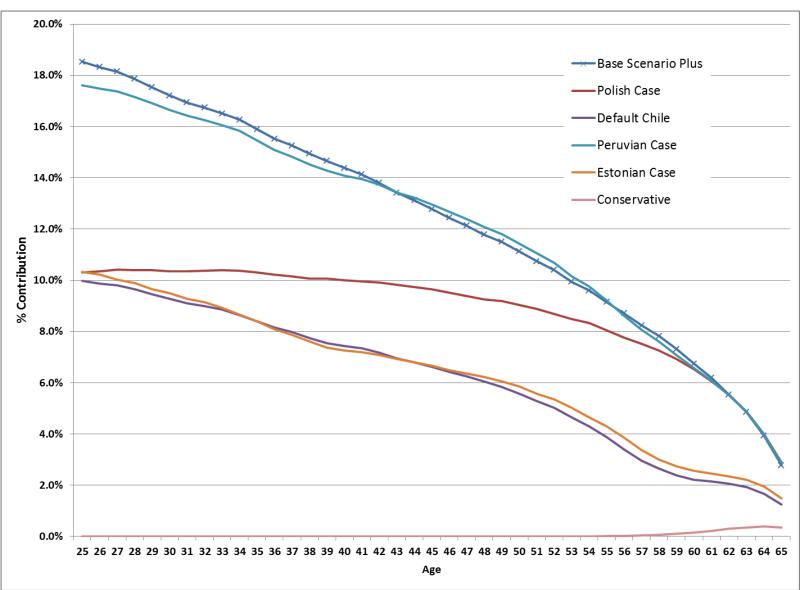


© Luis M. Viceira, Harvard Business School

Value of Guarantees in Base Case

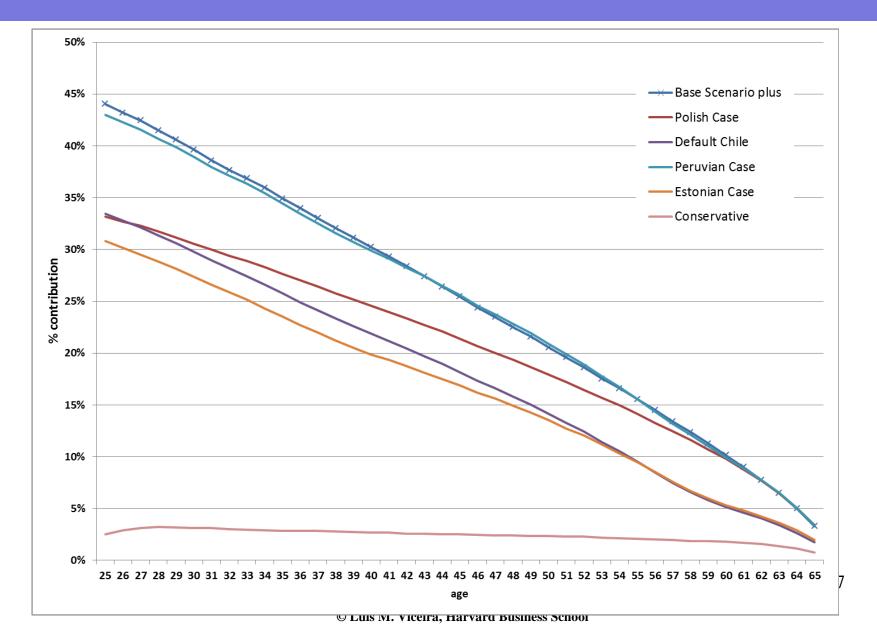
- Holding inflation and interest rate constant, value of guarantees generally declines as retirement approach because fraction of assets invested in equities declines.
- At long horizons, real guarantee is much more expensive than nominal guarantee:
 - Inflation process implies that inflation trends upwards. Thus real value of nominal guarantees declines over time.
 - Controlling for asset allocation, cost of nominal guarantee increases over time as retirement approaches.
- At very short horizons, nominal guarantees could be more expensive than real guarantees:
 - There is some risk of deflation which is greatest at short horizons, and underlying assets are all real
 13

Cost of Nominal Guarantees for Different Scenarios



© Luis M. Viceira, Harvard Business School

Cost of Nominal Guarantees for Different Scenarios


- Guarantees on more aggressive strategies are more expensive than conservative strategies.
 - The conservative case is the least expensive scenario, but its cost increases over time because the underlying bonds are inflation-indexed and do not protect against risk of deflation.
- Controlling for equity/bond split, guarantees on funds that invest more in local equity are more expensive:
 - Base case and Peruvian case are twice as expensive as Chilean case and Estonian case despite having similar bond/equity allocations.

Cost of Real Guarantees for Different Scenarios

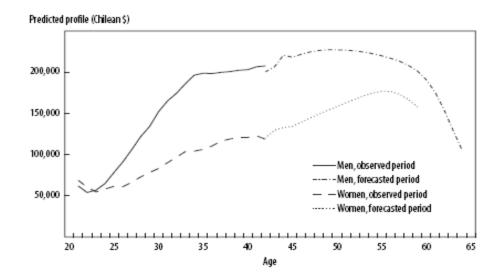
© Luis M. Viceira, Harvard Business School

Cost of Guarantees of Real + 1%

Implementation

- The guarantee can be implemented buying enough zero-coupon bonds (nominal or inflation-indexed) paying amount of contribution at retirement age.
- Bond allocation of underlying portfolio strategy in the fund may already cover part or all of the investment in zero-coupon bonds needed.
- Calculated cost of the guarantees is simply how much additional investment in zero-coupon bonds would be necessary to ensure recovery of contribution at retirement.

Implementation


- This suggests tailoring bond allocation in pension fund to guarantee recovery of contribution at retirement:
 - Invest in enough zero-coupon bonds (nominal or inflation-indexed) paying the amount of contribution at retirement age.
 - Invest the rest in equities, preferably an internationally-diversified portfolio of equities.
- Alternatively, government might take care of bond allocation, and leave equity allocation to pension fund managers.
- Overall resulting asset allocation may or may not look like a lifecycle fund, depending on type of guarantee and level of interest rates.

Implementation

- The system could be self-contained to the extent that younger generations sell these bonds to older generations.
- But they would have to invest the proceeds from those sales into underlying bonds to hedge their exposure.
- From whom should they buy those bonds?
- Ultimately, guarantees will be as good as the credit worthiness of the underlying bonds used to hedge them.

Pension Results

- To compute pension results with and without guarantees, we follow Viceira (2010) to compute labor earnings and pension contributions:
 - Labor earnings follow inverted U-shape over working life, subject to permanent and transitory shocks.
 - Contributions are 10% of labor earnings.
 - Deterministic component of labor earnings taken from Bernstein, Larrain, and Pino (2006):

© Luis M. Viceira, Harvard Business School

Pension Results

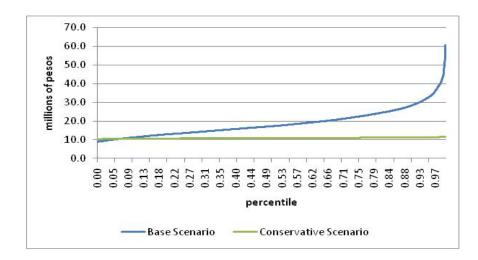
- Pension results at retirement age have two sources of uncertainty:
 - Investment uncertainty: return on equity returns, bond returns, interest rates, and inflation.
 - Labor income uncertainty

Standard Deviation of Asset Accumulation at Retirement Age

(millions of pesos)

	Base			Conservative				
					No			
	No Guarantee	Nominal	Real	Real +1%	Guarantee	Nominal	Real	Real +1%
Deterministic Income, Constant Rate	8.7	8.6	7.4		0.0	0.0	0.0	
Deterministic Income, Stochastic Rate	8.8	8.7	7.3		0.2	0.2	0.2	
Stochastic Income, Constant Rate	13.9	13.8	12.2	10.0	5.6	5.6	5.6	5.7
Stochastic Income, Stochastic Rate	13.9	13.8	13.6	9.7	5.6	5.6	5.6	5.6

• We will focus on pension results along expected contribution path and with a real guarantee.


Impact of Guarantees on Pension Results

Comparison of Asset Accumulation on Base and Conservative Scenarios¹

(millions of pesos)

	No G	uarantees	Real		
	Base	Conservative	Base	Conservative	
Average	21.7	10.9	18.8	10.9	
SD	8.8	0.2	7.3	0.2	
Percentile 1	8.7	10.3	9.1	10.3	
Percentile 50	19.8	10.9	17.2	10.9	
Percentile 90	32.9	11.2	28.2	11.2	

¹ It assumes deterministic income, stochastic rate

Impact of Guarantees on Pension Results

Replacement Rate for Different Scenarios¹

(as a percentage of last income)

	Average		Percentile 1		
	No Guarantee	Real	No Guarantee	Real	
Base	104%	90%	38%	38%	
Conservative	52%	52%	35%	35%	
Chile Default	81%	75%	40%	39%	
Estonian	85%	79%	37%	38%	
Peruvian	100%	87%	37%	38%	
Polish	74%	68%	32%	35%	

¹Deterministic Income, stochastic rate

Impact of Guarantees on Pension Results

- Generally, real guarantee kicks in at approximately 1% of distribution of pension outcomes.
 - That is, sum of contributions adjusted for inflation is equal to percentile 1 of the distribution of accumulated assets.
- Real guarantee buys an annuity equal to at least 32%-40% of salary in last year of working life, and ensures an average replacement ratio of 68%-90%, versus 52% in a conservative strategy.
 - Guarantee is calculated taking into account interest rates generated by our model and actuarial tables for Chile.
- Guarantee assumes 10% contribution along expected path of labor earnings over working life, i.e., it is for a typical pension plan participant.
 - When we allow for labor income uncertainty, we also introduce dispersion in pension outcomes. [©] Luis M. Viceira, Harvard Business School

Pension Results with Guarantees

	Base	Conservative	Chile Default	Estonian	Peruvian	Polish
Deterministic Income	, Constant Rate					
Average	100%	57%	83%	88%	96%	76%
SD	100%	0%	52%	70%	95%	59%
Percentile 1	100%	121%	105%	102%	99%	98%
Percentile 50	100%	62%	88%	90%	97%	77%
Percentile 90	100%	38%	73%	81%	96%	70%
Deterministic Income	Stochastic Rate					
Average	100%	58%	83%	88%	96%	76%
SD	100%	3%	52%	71%	95%	59%
Percentile 1	100%	113%	104%	101%	99%	98%
Percentile 50	100%	63%	88%	91%	96%	78%
Percentile 90	100%	40%	74%	82%	96%	71%

Conclusions

- DC pension results in the wake of the global financial and economic crisis have triggered discussion around minimum guarantees in pension funds.
- Current and proposed guarantees call for guaranteeing either the nominal or the real value of pension contributions.
- We show that the cost of such guarantees as a fraction of contributions is relatively small for nominal guarantees (1%-2%), but more significant for real guarantees (as high as 20% of contributions) at long horizons .
- The value of nominal and real guarantees is about the same at short horizons (1%-3%)

- Real guarantees ensure minimum replacement ratios in the order of 32%-35%.
- At the same time, the underlying risky portfolio strategies provide significantly larger average replacement ratios than conservative strategies.
- It is important to think carefully not only about the cost of providing these guarantees, but also about their implementation.
- Who will make good on these guarantees?
- Even if these guarantees are hedged via investments in appropriately designed bond portfolios, they are still subject to the default risk on those portfolios.

Supplementary Slides

Stochastic Interest Rate

• The model assumes that interest rates follows the short term dynamics of the Vasicek model;

 $r_{t+1} = r_t + \gamma (\bar{r} - r_t) \Delta t + \sigma_r \sqrt{\Delta t} \varepsilon_{3t}$

• The analytic expression of a zero coupon bond with T years of maturity (B(t,T)) is given by:

$$B(t,T) = \exp(-A(t,T)r_t + D(t,T))$$

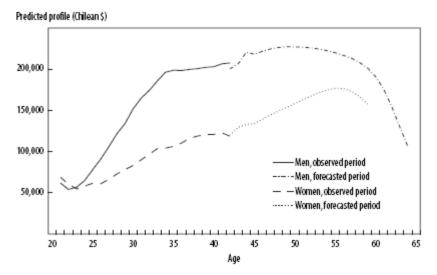
$$A(t,T) = \frac{1 - \exp(-\gamma(T-t))}{\gamma}$$

$$D(t,T) = \left(\bar{r} - \frac{\sigma_r^2}{2\gamma}\right) \left(A(t,T) - (T-t)\right) - \frac{\sigma_r A(t,T)^2}{4\gamma}$$

• We feed the Vasicec formula with the parameters calculated by Molinare (2002) for Chile $\gamma = 0.3831$ $\sigma_r = 3.6305\%$ $\bar{r} = 3\%$

Labor Earnings

• Life-cycle labor income:


$$\ln w_t = f(t) + v_t + \varepsilon_t,$$

$$v_t = v_{t-1} + u_t$$

- f(t) is a deterministic age-dependent component of earnings
- permanent shock u and transitory shock ε are uncorrelated and normally distributed.
- Participant joins the labor force (and starts contributing to the plan) at age 25, and retires at age 65.
- Contribution rate is 10% of monthly salary.

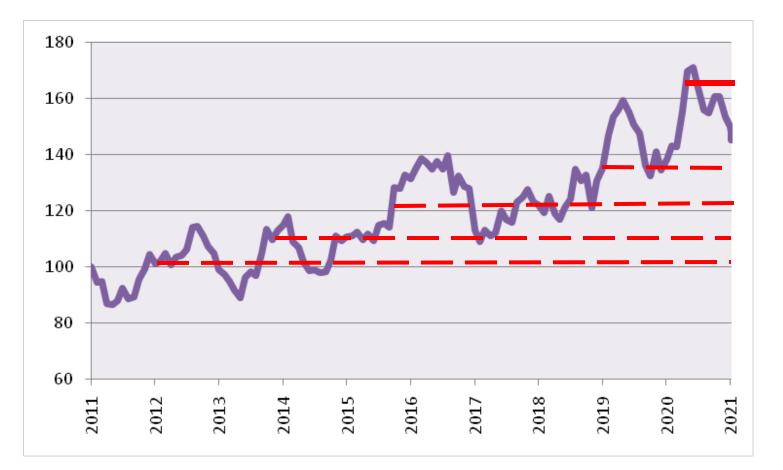
Labor Earnings

• Deterministic component of labor earnings taken from Bernstein, Larrain, and Pino (2006):

- Labor income uncertainty taken from US estimates:
 - Standard deviation of shocks to permanent income (v_t) = 13.89%
 - Standard deviation of shocks to permanent income (ε_t) = 10.95%

Table 9	Key Triggering Points on Asset Accumulation ¹			
		Breakeven with		
	Guarantees on real	average of		
	contributions trigger at	conservative strat.		
Base	0.10%	8.5%		
Chile	<0.01%	6.4%		
Estonian	<0.01%	9.3%		
Peruvian	0.10%	10.0%		
Polish	0.70%	23.8%		
¹ Determini	stic income, stochsatic rate			

Generation funds with guarantees

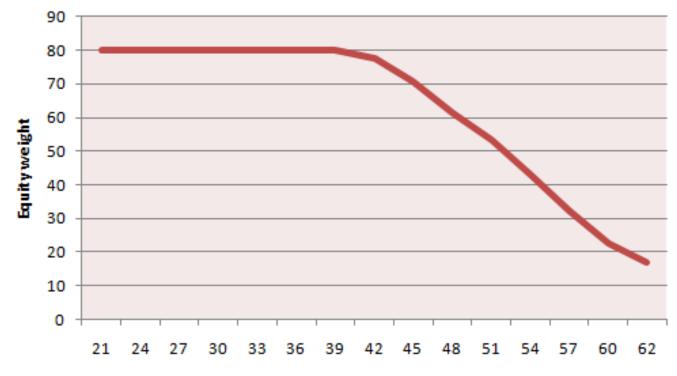


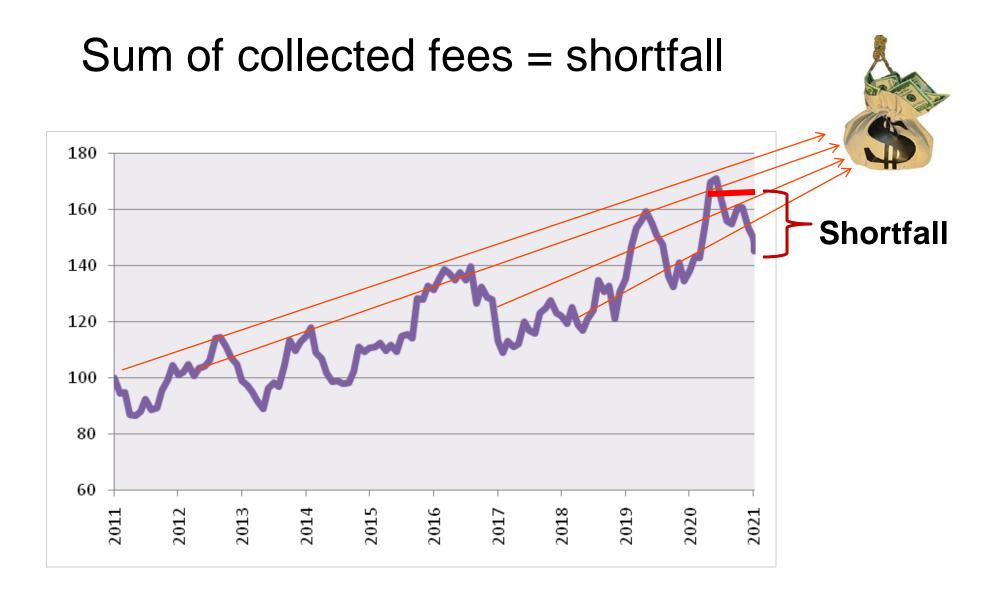
- The Product short description
- Pricing of Guarantees
- Finding the optimal lifecycle asset allocation in a product with a guarantee
- Risk control


• Yearly lock-in guarantee: 100% of portfolio value is locked in on the 31 of Dec. every year

• A fee is charged for the guarantee

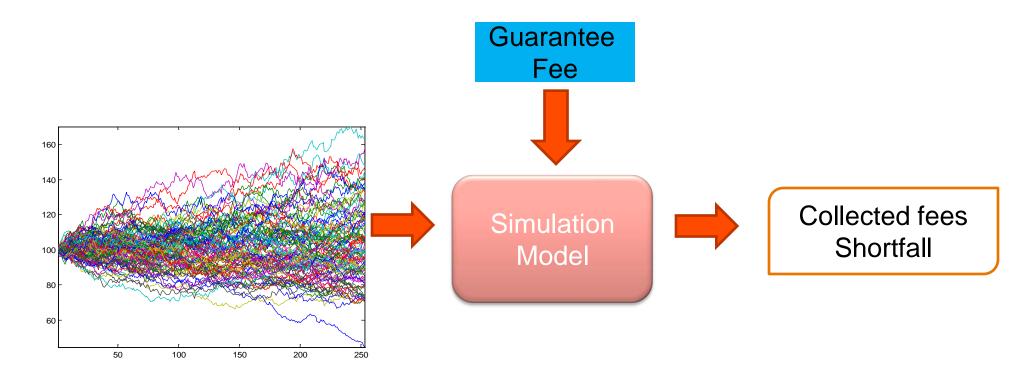
Company covers any shortfall


• At retirement, company covers any shortfall between portfolio value and highest guarantee value.



Each individual gets allocation according to his or her age.

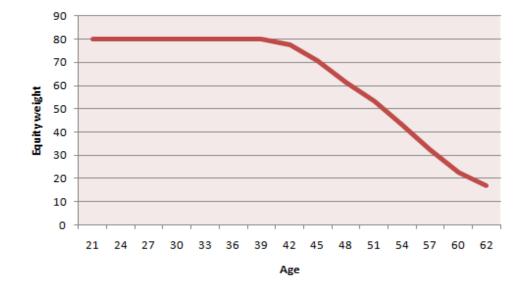
Pricing the guarantee


By Monte Carlo simulation

- 1. Simulate a large number of different scenarios for underlying assets (e.g. stocks and bonds)
- 2. For each scenario: Simulate the product and calculate:
 - Collected fees
 - Shortfall
- 3. Average over all scenarios and find the fee that makes:

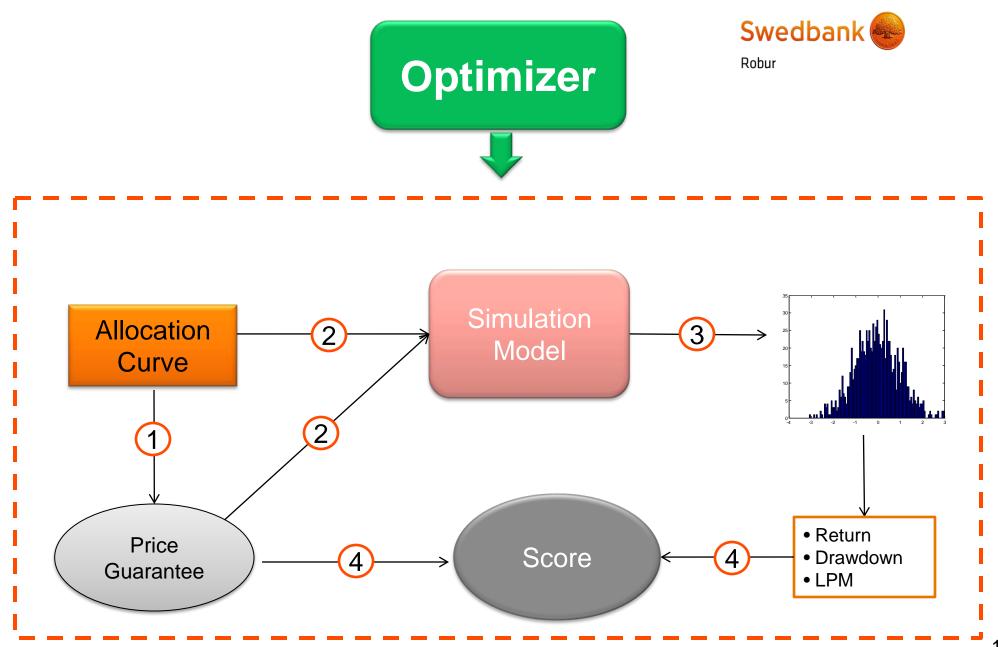
Average(Collected fees) = Average(Shortfall)

Pricing of the guarantee

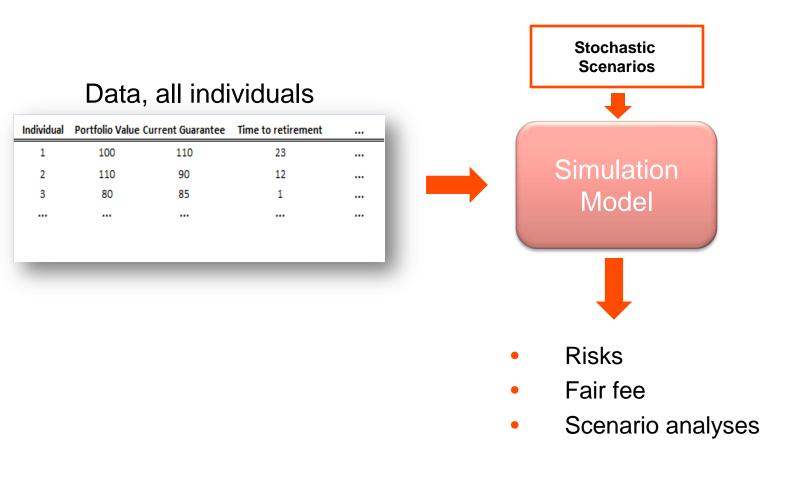


• Use additional information from the distribution in the pricing

Calculating the allocation curve


- Shape of the curve determines potential return and risk
- It also affects the price of the guarantee.

Finding the "optimal" allocation curve?


- I.e. an allocation curve that gives:
 - Good return potential
 - Limited downside
 - Cheap guarantee

- Expected return
- Drawdown, LPM
- Guarantee Price
- 1. Formulate your goals as objective functions
- 2. Use multiobjective optimization techniques to find the "optimal" allocation

Risk control

• This is also important in order to meet regulatory demands, e.g. Solvency II 13

- Important to price the guarantee properly
- Multiobjective optimization to find the optimal lifecycle asset allocation
- Important to monitor the risks

The Role of Guarantees in Second Pillars: Case of Slovakia 5th Contractual Savings Conference

2nd pillar in Slovakia

- January 2005: mandatory, DC, multiportfolio system with individual accounts, carved out of public PAYG system (contributions 50:50)
- As from June 2006 automatic enrollment
- Coverage: 70% of working population
- Success story!

2005: Guarantees

Reality

- Internal benchmarks: comparison of yields of the same type portfolios with an obligation of the management company to pay money to the fund from its own pockets
- Market response
 - Herding behaviour
 - Low-risk portfolios

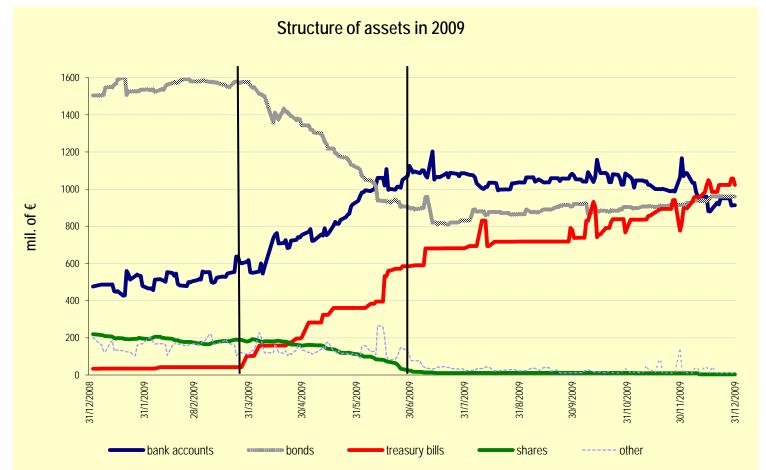
100% 80% 60% 40% 20% 0% conservative growth balanced -20% ■ bank deposits ■ bonds+T-bills ■ shares ■ other assets ■ liabilities 0% 50% 70% Reg. limits

14%

0%

Structure of portfolios (as of March 2008)

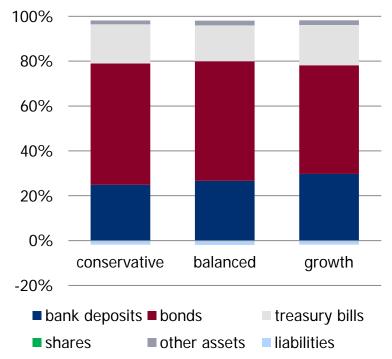
20%


2009: changes of the guarantees

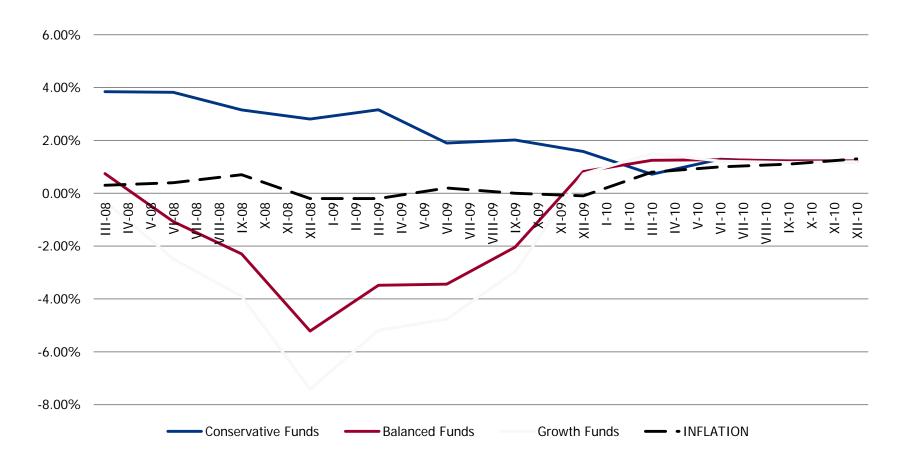
External benchmarks + crisis:

- a) conservative portfolio
 - Average yield to remain stable over 6 months period
 - Underperfomance: Management company to transfer money from its own pockets to the pension fund
 - Sanctions
- b) balanced and growth portfolio
 - The asset structure to match the benchmark compiled by management companies and disclosed in prospectus
 - No sanctions

Market response



Market response


- Market response
 - Sale of shares
 - Duration of portfolio<1 y

Structure of portfolios (as of June 2011)

2nd pillar performance

2012: further changes of the guarantees

Guarantees

- To remain only in conservative portfolios
- Comparing the average yields over the 5 years period
- Underporformance: Management company to transfer money from its own pockets to the pension fund

Thank you for your attention

Peter Penzes Securities Market and Pension Savings Regulation Section National Bank of Slovakia

t: +421 2 5787 3374

e: <u>peter.penzes@nbs.sk</u>